Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nanomaterials (Basel) ; 13(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37110963

RESUMO

Graphene-based polymer composites are innovative materials which have recently found wide application in many industrial sectors thanks to the combination of their enhanced properties. The production of such materials at the nanoscale and their handling in combination with other materials introduce growing concerns regarding workers' exposure to nano-sized materials. The present study aims to evaluate the nanomaterials emissions during the work phases required to produce an innovative graphene-based polymer coating made of a water-based polyurethane paint filled with graphene nanoplatelets (GNPs) and deposited via the spray casting technique. For this purpose, a multi-metric exposure measurement strategy was adopted in accordance with the harmonized tiered approach published by the Organization for Economic Co-operation and Development (OECD). As a result, potential GNPs release has been indicated near the operator in a restricted area not involving other workers. The ventilated hood inside the production laboratory guarantees a rapid reduction of particle number concentration levels, limiting the exposure time. Such findings allowed us to identify the work phases of the production process with a high risk of exposure by inhalation to GNPs and to define proper risk mitigation strategies.

2.
Polymers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904403

RESUMO

In this work, we investigate the processability and the volumetric electrical properties of nanocomposites made of aerospace-grade RTM6, loaded with different carbon nanoparticles. Nanocomposites with graphene nanoplatelets (GNP), single-walled carbon nanotubes (SWCNT) and hybrid GNP/SWCNT in the ratio 2:8 (GNP2SWCNT8), 5:5 (GNP5SWCNT5) and 8:2 (GNP8SWCNT2) were manufactured and analyzed. The hybrid nanofillers are observed to have synergistic properties as epoxy/hybrid mixtures showed better processability than epoxy/SWCNT, while maintaining high values of electrical conductivity. On the other hand, epoxy/SWCNT nanocomposites present the highest electrical conductivities with the formation of a percolating conductive network at lower filler content, but very large viscosity values and filler dispersion issues, which significantly affect the final quality of the samples. Hybrid nanofiller allows us to overcome the manufacturing issues typically associated with the use of SWCNTs. The combination of low viscosity and high electrical conductivity makes the hybrid nanofiller a good candidate for the fabrication of aerospace-grade nanocomposites with multifunctional properties.

3.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366170

RESUMO

Within the paradigm of smart mobility, the development of innovative materials aimed at improving resilience against structural failure in lightweight vehicles and electromagnetic interferences (EMI) due to wireless communications in guidance systems is of crucial relevance to improve safety, sustainability, and reliability in both aeronautical and automotive applications. In particular, the integration of intelligent structural health monitoring and electromagnetic (EM) shielding systems with radio frequency absorbing properties into a polymer composite laminate is still a challenge. In this paper, we present an innovative system consisting of a multi-layered thin panel which integrates nanostructured coatings to combine EM disturbance suppression and low-energy impact monitoring ability. Specifically, it is composed of a stack of dielectric and conductive layers constituting the sensing and EM-absorbing laminate (SEAL). The conductive layers are made of a polyurethane paint filled with graphene nanoplatelets (GNPs) at different concentrations to tailor the effective electrical conductivity and the functionality of the material. Basically, the panel includes a piezoresistive grid, obtained by selectively spraying onto mylar a low-conductive paint with 4.5 wt.% of GNPs and an EM-absorbing lossy sheet made of the same polyurethane paint but properly modified with a higher weight fraction (8 wt.%) of graphene. The responses of the grid's strain sensors were analyzed through quasi-static mechanical bending tests, whereas the absorbing properties were evaluated through free-space and waveguide-based measurement techniques in the X, Ku, K, and Ka bands. The experimental results were also validated by numerical simulations.

4.
Nanomaterials (Basel) ; 12(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35564114

RESUMO

To produce clothes made with engineered fabrics to monitor the physiological parameters of workers, strain sensors were produced by depositing two different types of water-based inks (P1 and P2) suitably mixed with graphene nanoplatelets (GNPs) on a fabric. We evaluated the biocompatibility of fabrics with GNPs (GNP fabric) through in vitro and in vivo assays. We investigated the effects induced on human keratinocytes by the eluates extracted from GNP fabrics by the contact of GNP fabrics with cells and by seeding keratinocytes directly onto the GNP fabrics using a cell viability test and morphological analysis. Moreover, we evaluated in vivo possible adverse effects of the GNPs using the model system Caenorhabditis elegans. Cell viability assay, morphological analysis and Caenorhabditis elegans tests performed on smart fabric treated with P2 (P2GNP fabric) did not show significant differences when compared with their respective control samples. Instead, a reduction in cell viability and changes in the membrane microvilli structure were found in cells incubated with smart fabric treated with P1. The results were helpful in determining the non-toxic properties of the P2GNP fabric. In the future, therefore, graphene-based ink integrated into elastic fabric will be developed for piezoresistive sensors.

5.
PLoS One ; 16(8): e0256090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34437571

RESUMO

The use of bone as raw material for implements is documented since the Early Pleistocene. Throughout the Early and Middle Pleistocene bone tool shaping was done by percussion flaking, the same technique used for knapping stone artifacts, although bone shaping was rare compared to stone tool flaking. Until recently the generally accepted idea was that early bone technology was essentially immediate and expedient, based on single-stage operations, using available bone fragments of large to medium size animals. Only Upper Paleolithic bone tools would involve several stages of manufacture with clear evidence of primary flaking or breaking of bone to produce the kind of fragments required for different kinds of tools. Our technological and taphonomic analysis of the bone assemblage of Castel di Guido, a Middle Pleistocene site in Italy, now dated by 40Ar/39Ar to about 400 ka, shows that this general idea is inexact. In spite of the fact that the number of bone bifaces at the site had been largely overestimated in previous publications, the number of verified, human-made bone tools is 98. This is the highest number of flaked bone tools made by pre-modern hominids published so far. Moreover the Castel di Guido bone assemblage is characterized by systematic production of standardized blanks (elephant diaphysis fragments) and clear diversity of tool types. Bone smoothers and intermediate pieces prove that some features of Aurignacian technology have roots that go beyond the late Mousterian, back to the Middle Pleistocene. Clearly the Castel di Guido hominids had done the first step in the process of increasing complexity of bone technology. We discuss the reasons why this innovation was not developed. The analysis of the lithic industry is done for comparison with the bone industry.


Assuntos
Fósseis/história , Tecnologia/métodos , Animais , Arqueologia , Osso e Ossos , Diáfises , Elefantes/anatomia & histologia , História Antiga , Hominidae , Humanos , Indústrias/métodos , Manufaturas/história
6.
Sci Rep ; 11(1): 7056, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782406

RESUMO

We present the study of a composite, yet continuous sedimentary succession covering the time interval spanning 2.6-0.36 Ma in the intramontane basin of Anagni (central Italy) through a dedicated borecore, field surveys, and the review of previous data at the three palaeontological and archaeological sites of Colle Marino, Coste San Giacomo and Fontana Ranuccio. By combining the magneto- and chronostratigraphic data with sedimentologic and biostratigraphic analysis, we describe the palaeogeographic and tectonic evolution of this region during this entire interval. In this time frame, starting from 0.8 Ma, the progressive shallowing and temporary emersion of the large lacustrine basins and alluvial plains created favorable conditions for early hominin occupation of the area, as attested by abundant tool industry occurrences and fossils. This study provides new constraints to better interpret the hominin migratory dynamics and the factors that influenced the location and spatial distribution during the early occupation of this region.

7.
Polymers (Basel) ; 12(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942610

RESUMO

The key to the preparation of polymer nanocomposites with new or improved properties resides in the homogeneous dispersion of the filler and in the efficient load transfer between components through strong filler/polymer interfacial interactions. This paper reports on the preparation of a series of nanocomposites of graphene and a polyolefin using different experimental approaches, with the final goal of obtaining multifunctional materials. A high-density polyethylene (HDPE) is employed as the matrix, while unmodified and chemically modified graphene fillers are used. By selecting the correct combination as well as the adequate preparation process, the nanocomposites display optimized thermal and mechanical properties, while also conferring good gas barrier properties and significant levels of electrical conductivity.

8.
Nanomaterials (Basel) ; 10(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756523

RESUMO

Widespread production and use of engineered nanomaterials in industrial and research settings raise concerns about their health impact in the workplace. In the last years, graphene-based nanomaterials have gained particular interest in many application fields. Among them, graphene nanoplatelets (GNPs) showed superior electrical, optical and thermal properties, low-cost and availability. Few and conflicting results have been reported about toxicity and potential effects on workers' health, during the production and handling of these nanostructures. Due to this lack of knowledge, systematic approaches are needed to assess risks and quantify workers' exposure to GNPs. This work applies a multi-metric approach to assess workers' exposure during the production of GNPs, based on the Organization for Economic Cooperation and Development (OECD) methodology by integrating real-time measurements and personal sampling. In particular, we analyzed the particle number concentration, the average diameter and the lung deposited surface area of airborne nanoparticles during the production process conducted by thermal exfoliation in two different ways, compared to the background. These results have been integrated by electron microscopic and spectroscopic analysis on the filters sampled by personal impactors. The study identifies the process phases potentially at risk for workers and reports quantitative information about the parameters that may influence the exposure in order to propose recommendations for a safer design of GNPs production process.

9.
Polymers (Basel) ; 11(7)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261759

RESUMO

In the present work, poly(vinylidene fluoride) (PVDF) films were produced by spin-coating, and applying different conditions of quenching, in order to investigate the dominant mechanism of the ß-phase formation. The influence of the polymer/solvent mass ratio of the solution, the rotational speed of the spin-coater and the crystallization temperature of the film on both the ß-phase content and the piezoelectric coefficient (d33) were investigated. This study demonstrates that the highest values of d33 are obtained when thinner films, produced with a lower concentration of polymer in the solvent (i.e., 20 wt.%), go through quenching in water, at room temperature. Whereas, in the case of higher polymer concentration (i.e., 30 wt.%), the best value of d33 (~30 pm/V) was obtained through quenching in liquid nitrogen, at the temperature of 77 K. We believe that in the former case, phase inversion is mainly originated by electrostatic interaction of PVDF with the polar molecules of water, due to the low viscosity of the polymer solution. On the contrary, in the latter case, due to higher viscosity of the solution, mechanical stretching induced on the polymer during spin-coating deposition is the main factor inducing self-alignment of the ß-phase. These findings open up a new way to realize highly efficient devices for energy harvesting and wearable sensors.

10.
PLoS One ; 13(5): e0196786, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29742147

RESUMO

Having thrived in Eurasia for 350,000 years Neandertals disappeared from the record around 40,000-37,000 years ago, after modern humans entered Europe. It was a complex process of population interactions that included cultural exchanges and admixture between Neandertals and dispersing groups of modern humans. In Europe Neandertals are always associated with the Mousterian while the Aurignacian is associated with modern humans only. The onset of the Aurignacian is preceded by "transitional" industries which show some similarities with the Mousterian but also contain modern tool forms. Information on these industries is often incomplete or disputed and this is true of the Uluzzian. We present the results of taphonomic, typological and technological analyses of two Uluzzian sites, Grotta La Fabbrica (Tuscany) and the newly discovered site of Colle Rotondo (Latium). Comparisons with Castelcivita and Grotta del Cavallo show that the Uluzzian is a coherent cultural unit lasting about five millennia, replaced by the Protoaurignacian before the eruption of the Campanian Ignimbrite. The lack of skeletal remains at our two sites and the controversy surrounding the stratigraphic position of modern human teeth at Cavallo makes it difficult to reach agreement about authorship of the Uluzzian, for which alternative hypotheses have been proposed. Pending the discovery of DNA or further human remains, these hypotheses can only be evaluated by archaeological arguments, i.e. evidence of continuities and discontinuities between the Uluzzian and the preceding and succeeding culture units in Italy. However, in the context of "transitional" industries with disputed dates for the arrival of modern humans in Europe, and considering the case of the Châtelperronian, an Upper Paleolithic industry made by Neandertals, typo-technology used as an indicator of hominin authorship has limited predictive value. We corroborate previous suggestions that the Middle-to-Upper Paleolithic transition occurred as steps of rapid changes and geographically uneven rates of spread.


Assuntos
Homem de Neandertal , Animais , Culinária/história , Culinária/instrumentação , História Antiga , Humanos , Itália , Minerais/análise , Armas/história
11.
PLoS One ; 13(3): e0194838, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29590208

RESUMO

The Tiber valley is a prominent feature in the landscape of ancient Rome and an important element for understanding its urban development. However, little is known about the city's original setting. Our research provides new data on the Holocene sedimentary history and human-environment interactions in the Forum Boarium, the location of the earliest harbor of the city. Since the Last Glacial Maximum, when the fluvial valley was incised to a depth of tens of meters below the present sea level, 14C and ceramic ages coupled with paleomagnetic analysis show the occurrence of three distinct aggradational phases until the establishment of a relatively stable alluvial plain at 6-8 m a.s.l. during the late 3rd century BCE. Moreover, we report evidence of a sudden and anomalous increase in sedimentation rate around 2600 yr BP, leading to the deposition of a 4-6m thick package of alluvial deposits in approximately one century. We discuss this datum in the light of possible tectonic activity along a morpho-structural lineament, revealed by the digital elevation model of this area, crossing the Forum Boarium and aligned with the Tiber Island. We formulate the hypothesis that fault displacement along this structural lineament may be responsible for the sudden collapse of the investigated area, which provided new space for the observed unusually large accumulation of sediments. We also posit that, as a consequence of the diversion of the Tiber course and the loss in capacity of transport by the river, this faulting activity triggered the origin of the Tiber Island.


Assuntos
Arqueologia , Geografia , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Paleontologia , Rios/química , Ilhas , Cidade de Roma , Fatores de Tempo
12.
Polymers (Basel) ; 10(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30966116

RESUMO

Recently, graphene-polymer composites gained a central role in advanced stress and strain sensing. A fundamental step in the production of epoxy-composites filled with graphene nanoplatelets (GNPs) consists in the exfoliation and dispersion of expanded graphite in a proper solvent, in the mixing of the resulting GNP suspension with the polymer matrix, and in the final removal of the solvent from the composite before curing through evaporation. The effects of traces of residual solvent on polymer curing process are usually overlooked, even if it has been found that even a small amount of residual solvent can affect the mechanical properties of the final composite. In this paper, we show that residual traces of N,N'-Dimethylformamide (DMF) in vinylester epoxy composites can induce relevant variations of the electrical, mechanical and electromechanical properties of the cured GNP-composite. To this purpose, a complete analysis of the morphological and structural characteristics of the composite samples produced using different solvent mixtures (combining acetone and DMF) is performed. Moreover, electrical, mechanical and electromechanical properties of the produced composites are assessed. In particular, the effect on the piezoresistive response of the use of DMF in the solvent mixture is analyzed using an experimental strain dependent percolation law to fit the measured electromechanical data. It is shown that the composites realized using a higher amount of DMF are characterized by a higher electrical conductivity and by a strong reduction of Young's Modulus.

13.
J Nanobiotechnology ; 15(1): 89, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233187

RESUMO

BACKGROUND: Secondary caries are considered the main cause of dental restoration failure. In this context, anti-biofilm and bactericidal properties are desired in dental materials against pathogens such as Streptococcus mutans. To this purpose, graphene based materials can be used as fillers of polymer dental adhesives. In this work, we investigated the possibility to use as filler of dental adhesives, graphene nanoplatelets (GNP), a non toxic hydrophobic nanomaterial with antimicrobial and anti-biofilm properties. RESULTS: Graphene nanoplatelets have been produced starting from graphite intercalated compounds through a process consisting of thermal expansion and liquid exfoliation. Then, a dental adhesive filled with GNPs at different volume fractions has been produced through a solvent evaporation method. The rheological properties of the new experimental adhesives have been assessed experimentally. The adhesive properties have been tested using microtensile bond strength measurements (µ-TBS). Biocidal activity has been studied using the colony forming units count (CFU) method. The anti-biofilm properties have been demonstrated through FE-SEM imaging of the biofilm development after 3 and 24 h of growth. CONCLUSIONS: A significantly lower vitality of S. mutans cells has been demonstrated when in contact with the GNP filled dental adhesives. Biofilm growth on adhesive-covered dentine tissues demonstrated anti-adhesion properties of the produced materials. µ-TBS results demonstrated no significant difference in µ-TBS between the experimental and the control adhesive. The rheology tests highlighted the necessity to avoid low shear rate regimes during adhesive processing and application in clinical protocol, and confirmed that the adhesive containing the 0.2%wt of GNPs possess mechanical properties comparable with the ones of the control adhesive.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Cimentos Dentários/química , Grafite/química , Streptococcus mutans/fisiologia , Anti-Infecciosos/química , Cimentos Dentários/farmacologia , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Estresse Oxidativo/efeitos dos fármacos , Reologia , Resistência à Tração
14.
Sci Rep ; 7(1): 8908, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827717

RESUMO

We present four new 40Ar/39Ar ages of tephra layers from an aggradational succession (Valle Giulia Formation) near the mouth of the Tiber Valley in Rome that was deposited in response to sea-level rise during Marine Isotopic Stage (MIS) 13. These new ages, integrated with seven previously determined ages, provide the only extant independent, radioisotopic age constraint on glacial termination VI and on the duration of MIS 13 sea-level rise. The new geochronologic constraints suggest a long duration for the period of sea-level rise (533 ± 2 through 498 ± 2 ka) encompassing two consecutive positive peaks of the δ18O curve (substages 13.3 and 13.1). Consistently, the litho-stratigraphic features of the sedimentary record account for two aggradational phases separated by an intervening erosional phase. Moreover, the ages obtained for this study give us the opportunity to compare the timing of the sea-level fluctuations inferred from the stratigraphic record and that provided by the astrochronologic calibration of the Oxygen isotopic curves, and to assess the calibrations of 40Ar/39Ar standards. Results of this comparison indicate that the best match is for an age of 1.186 Ma for the Alder Creek Rhyolite sanidine and 28.201 Ma for the Fish Canyon Tuff sanidine.

15.
Sci Rep ; 7(1): 2517, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566740

RESUMO

Through a geomorphological study relying on statistically assessed classes of hilltop elevations, we reconstruct a suite of paleo-surfaces along the Tiber River Valley north of Rome that we identify as fluvial terraces formed by interplay between global sea-level fluctuations and regional upift. Using biostratigraphic constraints provided by marine through continental deposits of Santernian age, we recognize the oldest terrace in this area, corresponding to an early coastal plain of late Santernian-Emilian age. By assuming the simple chronological principle of a staircase geometry we correlate the sea-level highstands of MIS 21 through MIS 5 with the lowest eight paleo-surfaces. By plotting against time the cumulated terrace elevations and the average elevation of the Santernian coastline in the investigated area, we detect rates of uplift during the last 1.8 Ma. Two major pulses of uplift are recognized 0.86 through 0.5 Ma, and 0.25 Ma through the Present, which are interpreted as driven by the subduction process and uprising of metasomatized magma bodies on the Tyrrhenian Sea Margin of central Italy, superimposied on a smaller isostatic component of uplift.

16.
PLoS One ; 12(1): e0170434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125602

RESUMO

We revise the chronostratigraphy of several sedimentary successions cropping out along a 5 km-long tract of the Aniene River Valley in Rome (Italy), which yielded six hominin remains previously attributed to proto- or archaic Neanderthal individuals, as well as a large number of lithic artefacts showing intermediate characteristics somewhere between the local Acheulean and Mousterian cultures. Through a method of correlation of aggradational successions with post-glacial sea-level rises, relying on a large set of published 40Ar/39Ar ages of interbedded volcanic deposits, we demonstrate that deposition of the sediments hosting the human remains spans the interval 295-220 ka. This is consistent with other well constrained ages for lithic industries recovered in England, displaying transitional features from Lower to Middle Paleolithic, suggesting the appearance of Mode 3 during the MIS 9-MIS 8 transition. Moreover, the six human bone fragments recovered in the Aniene Valley should be regarded as the most precisely dated and oldest hominin remains ascribable to Neanderthal-type individuals in Europe, discovered to date. The chronostratigraphic study presented here constitutes the groundwork for addressing re-analysis of these remains and of their associated lithic industries, in the light of their well-constrained chronological picture.


Assuntos
Fósseis , Homem de Neandertal , Rios , Animais , Arqueologia , Europa (Continente) , Humanos , Paleontologia , Cidade de Roma
17.
PLoS One ; 11(8): e0160516, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525705

RESUMO

We present here the results of a technological and typological analysis of the Acheulian and early Middle Paleolithic assemblages from Torre in Pietra (Latium, Italy) together with comparisons with the Acheulian small tools of Castel di Guido. The assemblages were never chronometrically dated before. We have now 40Ar/39Ar dates and ESR-U-series dates, within a geomorphological framework, which support correlations to marine isotope stages. The Acheulian (previously correlated to MIS 9) is now dated to MIS 10 while the Middle Paleolithic is dated to MIS 7. Lithic analyses are preceded by taphonomic evaluations. The Levallois method of the Middle Paleolithic assemblage is an innovation characterized by the production of thin flake blanks without cortex. In contrast, the small tool blanks of the Acheulian were either pebbles or thick flakes with some cortex. They provided a relatively easy manual prehension. The choice of Levallois thin flake blanks in the Middle Paleolithic assemblage suggest that the new technology is most likely related to the emergence of hafting. Accordingly, the oldest direct evidence of hafting technology is from the site of Campitello Quarry in Tuscany (Central Italy) where birch-bark tar, found on the proximal part of two flint flakes, is dated to the end of MIS 7. Nevertheless, a peculiar feature of the Middle Paleolithic at Torre in Pietra is the continuous presence of small tool blanks on pebbles and cores and on thick flake albeit at a much lower frequency than in the older Acheulian industries. The adoption of the new technology is thus characterized by innovation combined with a degree of stability. The persistence of these habits in spite of the introduction of an innovative technique underlies the importance of cultural transmission and conformity in the behavior of Neandertals.


Assuntos
Arqueologia , Homem de Neandertal , Tecnologia , Animais , Fósseis , Itália , Comportamento de Utilização de Ferramentas
18.
Polymers (Basel) ; 8(8)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30974549

RESUMO

Development of epoxy or epoxy-based vinyl ester composites with improved mechanical and electromagnetic properties, filled with carbon-based nanomaterials, is of crucial interest for use in aerospace applications as radar absorbing materials at radio frequency. Numerous studies have highlighted the fact that the effective functional properties of this class of polymer composites are strongly dependent on the production process, which affects the dispersion of the nanofiller in the polymer matrix and the formation of micro-sized aggregations, degrading the final properties of the composite. The assessment of the presence of nanofiller aggregation in a composite through microscopy investigations is quite inefficient in the case of large scale applications, and in general provides local information about the aggregation state of the nanofiller rather than an effective representation of the degradation of the functional properties of the composite due to the presence of the aggregates. In this paper, we investigate the mechanical, electrical, and electromagnetic properties of thermosetting polymer composites filled with graphene nanoplatelets (GNPs). Moreover, we propose a novel approach based on measurements of the dielectric permittivity of the composite in the 8⁻12 GHz range in order to assess the presence of nanofiller aggregates and to estimate their average size and dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA